$\qquad$

## Skills Maintenance

Multiplying Integers

## Activity 1

Complete the equations. Remember the PASS rules.

1. $-1 \cdot 3=$ $\qquad$
2. 4 • $\qquad$ $=-4$
3. $-7=$ $\qquad$ - -1
4. $-2 \cdot-1=$ $\qquad$
5. -1 . $\qquad$ $=-8$
6. $-12=$ $\qquad$ - 12
$\qquad$

## $\stackrel{\%}{=} \div$ Apply Skills <br> Invisible Coefficients

## Activity 1

Solve the equations involving invisible coefficients. Show all of your work so you can analyze the steps later if you make a mistake.

1. $-a=-25$

Show your work here:
2. $b-2 b=12$

Show your work here:
4. $-d=5+-5$

Show your work here:
5. $e+2 e+-4 e=-5$

Show your work here:
$\qquad$

## $\equiv$ <br> Problem-Solving Activity

## Exterior Angle Measurement of Regular Polygons

In the Table of Measures for Regular Polygons you will find the measure of interior angles for different regular polygons. Use this information to solve the problems. Find the sum of the measure of exterior angles for different polygons. You will also write two equations:

1. An equation for the exterior angle.
2. An equation for the sum of the exterior angles.

| Table of Measures for Regular Polygons |  |  |  |
| :---: | :---: | :---: | :---: |
| Shape | Number of <br> Sides | Total Measure of the <br> Interior Angles | Measure of <br> Each Angle |
| triangle | 3 | $180^{\circ}$ | $60^{\circ}$ |
| square | 4 | $360^{\circ}$ | $90^{\circ}$ |
| pentagon | 5 | $540^{\circ}$ | $108^{\circ}$ |
| hexagon | 6 | $720^{\circ}$ | $120^{\circ}$ |
| octagon | 8 | $1,080^{\circ}$ | $135^{\circ}$ |

1. Hexagon


Write an equation for the exterior angle of a hexagon.
$n=$ $\qquad$
Write an equation for the sum of the exterior angles of a hexagon.
$n=$ $\qquad$
2. Octagon


Write an equation for the exterior angle of an octagon.
$n=$ $\qquad$
Write an equation for the sum of the exterior angles of an octagon.
$c=$ $\qquad$
$\qquad$
$\qquad$
3. Pentagon


Write an equation for the exterior angle of a pentagon.
$\qquad$
$n=$ $\qquad$
Write an equation for the sum of the exterior angles of a pentagon.
$j=$ $\qquad$
4. Square


Write an equation for the exterior angle of a square.

$$
n=
$$

Write an equation for the sum of the exterior angles of a square.
$\qquad$
$s=$

