\qquad

Skills Maintenance

Equations with Variables on Both Sides

Activity 1

Solve each equation.

1. $2 x+5=3 x+5$

Show your work here:
$x=$ \qquad
Check your work here:
2. $-6+x=2 x-5$

Show your work here:
$x=$ \qquad
Check your work here:

Activity 2

Rewrite each pattern using an equation with variables that represent the pattern.

Model

$$
\begin{aligned}
& 6+2=2+6 \\
& 8+5=5+8 \\
& -1+-2=-2+-1
\end{aligned}
$$

Write the equation. $\underline{x+y=y+x}$

1. $3(4+2)=3 \cdot 4+3 \cdot 2$
$2(5+1)=2 \cdot 5+2 \cdot 1$
$6(8+2)=6 \cdot 8+6 \cdot 2$
Write the equation. \qquad
2. $4 \cdot 1+4 \cdot 9=4(1+9)$
$2 \cdot 3+2 \cdot 8=2(3+8)$
$6 \cdot 5+6 \cdot 6=6(5+6)$
Write the equation. \qquad
\qquad
\qquad

$\stackrel{\%}{\overline{-}} \div$ Apply Skills
 The Distributive Property in Equations

Activity 1

Solve the equations using the distributive property. Be sure to show your work and check your answers.

1. $3(x+5)=30$

Show your work here:
$x=$ \qquad
Check your work here:
3. $-2(-x+-1)=-12$

Show your work here:
$x=$ \qquad
Check your work here:
4-2
2. $2(x+10)=40$

Show your work here:
$x=$ \qquad
Check your work here:
\qquad Date \qquad

Problem-Solving Activity

Angles and Intersecting Lines
Use algebra to find the total measurement of the exterior angles for each figure. Look for a pattern in the measures of these angles. Can you make a general statement about the measure of angles in straight lines that intersect?

1. What are the measures of $\angle 2, \angle 3$, and $\angle 4$?

2. What are the measures of $\angle 1, \angle 2$, and $\angle 3$?

\qquad
\qquad
3. What are the measures of $\angle 2, \angle 3$, and $\angle 4$?

\qquad
4. What are the measures of $\angle 1, \angle 2$, and $\angle 3$?

