Homework

Activity 1

Create function tables for each problem.

Input

Output

1. In basketball, each basket is worth 2 points.
2. At the Candy Shoppe in the mall, the price of a bag of candy is $\$ 5$ per pound.

Activity 2

Draw a dot graph for each of the problems in Activity 1 on graph paper. Be sure to label the axes of your graph and use an appropriate scale. Use the graph to answer the following questions.

1. How many pounds of candy can you buy for $\$ 10$?
2. How many points do you get for shooting 5 baskets?
3. What does it cost for 3 pounds of candy?
4. If you scored 6 points, how many baskets did you make?

Homework

Activity 3

Write the coordinates of all the vertices of the reflected triangles below. Use the letters to label your answers. Then answer the questions about the triangles.

1. Look at the coordinates for A and A^{\prime}. Do you see a pattern? Write a statement that tells the pattern.
2. Do you see the same pattern for B and B^{\prime} ? How about C and C^{\prime} ?

Activity 4 • Distributed Practice

Write a general statement that shows the property being used in each example.

1. Write a general statement using the variables a, b, and c to demonstrate the distributive property.
Examples: $3(4+5)=3 \cdot 4+3 \cdot 5 \quad 2(-1+-2)=2 \cdot-1+2 \cdot-2$
2. Write a general statement using the variables x and y to demonstrate the commutative property for multiplication.
Examples: $4 \cdot 3=3 \cdot 4 \quad-1 \cdot 2=2 \cdot-1$
3. Write a general statement using the variable w to demonstrate the multiplicative property of 0 .
Examples: $\quad 4 \cdot 0=0 \quad-\frac{4}{5} \cdot 0=0$
4. Write a general statement using the variable z to demonstrate the additive inverse property.
Examples: $0=6+-6 \quad 0=15+-15$
