Name ______ Date _____

Skills Maintenance

Exponents and Repeated Multiplication

Activity 1

Rewrite each of the problems with exponents as repeated multiplication. Then use your calculator to solve.

Model

$$2^5 \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32$$

1. 34 _____

3. 5³

4. 2⁶ _____

5. 19 _____

Name _____ Date ____

Unit Review

Square Roots and Irrational Numbers

Activity 1

Use a calculator to find the square roots for the numbers in the table. Round your answer to the nearest hundredth.

Number	Square Roots
20	
32	
45	
61	

Activity 2

Solve the equations with square roots. Remember that anything to the O power is 1. Also remember that when you multiply powers with the same base, you can add their exponents.

1.
$$2^2 + 2^3$$
 _____ 2. 3^0 _____

3.
$$4^2 + 4^2$$

5.
$$2^0 + 2^3$$

7.
$$2^2 + 5^0$$

8.
$$3^2 + 3^0$$

Activity 3

Find the value of x.

1.
$$\sqrt{3+x} = 4$$
 $x =$ ______ 2. $x^2 = 64$ $x =$ ______

2.
$$x^2 = 64$$

3.
$$x^2 + 9 = 25$$
 $x =$ **4.** $\sqrt{4x} = 8$ $x =$

4.
$$\sqrt{4x} = 8$$

5.
$$2x^2 = 50$$
 $x =$

Name ______ Date ____

Activity 4

Use what you know about square numbers to estimate the number in each problem. Use the number line to show how you figured out your answer.

1. $\sqrt{20}$

Show the perfect square numbers around 20 and where $\sqrt{20}$ would be on the number line.

What is your estimated answer of $\sqrt{20}$?

2. $\sqrt{27}$

Show the perfect square numbers around 27 and where $\sqrt{27}$ would be on the number line.

What is your estimated answer of $\sqrt{27}$?

3. $\sqrt{35}$

Show the perfect square numbers around 35 and where $\sqrt{35}$ would be on the number line.

What is your estimated answer of $\sqrt{35}$?

Name ______ Date ____

Activity 5

Find the missing side length for each of the right triangles using the Pythagorean theorem.

1. What is the length of side a? ______
Show your work here.

$$a^2 + b^2 = c^2$$

2. What is the length of side *b*? ______ Show your work here.

$$a^2 + b^2 = c^2$$

$$a = 9$$

$$c = 10$$

3. What is the length of side *c*? ______ Show your work here.

$$a^2 + b^2 = c^2$$

4. What is the length of side *c*? _____

5. What is the length of side *a*? _____

Name ______ Date _____

Unit Review

Non-Linear Functions

Activity 1

For each of the x/y tables, write the linear function using an equation. Then graph the function.

1.

Х	у
1	3
2	6
3	9
4	12
5	15

What is the function?

2.

	X	y
	1	4
	2	8
	3	12
Γ	4	16
Γ	5	20

What is the function?

_ Date _ Name_

Activity 2

Fill in the y-values in the table for the function. Then draw the function on the coordinate graph.

$$y = -x^2$$

X	у
-3	
-2	
-1	
0	
1	
2	
3	

Activity 3

Circle the graph that goes with each function. Fill in values in the x/ytable to help you find the corresponding graph.

1.
$$y = \frac{1}{4}x^2$$

у

(a)

(c)

(b)

(d)

2. $y = x^3$

Х	у

(a)

(b)

(c)

(d)

3. $y = -3x^2$

X	у

(a)

(b)

(c)

(d)

